Friday, March 24, 2023
No Result
View All Result
Get the latest A.I News on A.I. Pulses
  • Home
  • A.I News
  • Computer Vision
  • Machine learning
  • A.I. Startups
  • Robotics
  • Data science
  • Natural Language Processing
  • Home
  • A.I News
  • Computer Vision
  • Machine learning
  • A.I. Startups
  • Robotics
  • Data science
  • Natural Language Processing
No Result
View All Result
Get the latest A.I News on A.I. Pulses
No Result
View All Result

como usar a tecnologia para prever riscos

February 17, 2023
140 10
Home Machine learning
Share on FacebookShare on Twitter


Mesmo após o período mais intenso da pandemia, é exponencial o aumento do número de pessoas que continuam a fazer compras ou acessar serviços financeiros diversos por meio de websites e aplicativos. A Pesquisa FEBRABAN de Tecnologia Bancária 2022 revela que os canais digitais somaram cerca de 80 bilhões de transações bancárias em 2021 – ante 68,5 bilhões em 2020 -, o que representa 70% do complete de 119 bilhões pagamentos realizados. O relatório aponta também que pela primeira vez o número de contas abertas em serviços digitais superou o de contas abertas em canais físicos.

Entretanto, a maior conveniência do on-line fez que as fraudes identificadas também aumentassem. Para os bancos, esse crescimento resultou em diversos custos operacionais, tais como: gastos com a geração de uma nova through do cartão para substituir os fraudados, dispêndios para estorno dos débitos indevidos e a consequente queda no faturamento, já que o cliente fica sem o plástico até que ele seja substituído. Isso sem falar em uma possível perda de prioridade (Prime of Pockets), ou seja, quando o consumidor deixa de utilizar determinado cartão preferencialmente.

Nesse cenário, os bancos dependem dos softwares e especialistas em prevenção a fraudes para classificar casos suspeitos e tratar aqueles que necessitem de uma análise mais estratégica. É necessária, então, o uso de recursos humanos, para análise investigativa, além de recursos tecnológicos capazes de agregar e processar grande quantity de dados. Usando técnicas analíticas, é possível mitigar os riscos de fraude e auxiliar na tomada de decisão.

Embora existam muitas empresas especializadas na identificação e no tratamento de casos como esses, o principal diferencial é a capacidade de prever e inibir os riscos antes mesmo que aconteçam. Para isso, são aplicadas abordagens estatísticas, como aprendizado de máquinas, mineração de dados, redes de relacionamentos e regras de anomalias, consultando as mais diversas fontes de dados para maximizar a identificação de casos.

Mas, quando essas estratégias não são implementadas de maneira efetiva, os esforços acabam sendo empregados incorretamente, e os resultados são negativos. A utilização da modelagem analítica é uma das maneiras mais eficazes para identificar não apenas um, mas diversos cartões que possivelmente estejam comprometidos, avaliando a probabilidade de seus cartões estarem em risco de fraude e identificando o ponto de comprometimento (POC).

O POC é o native onde os dados dos cartões estão em risco, o que usualmente significa o native da clonagem das informações do plástico. As plataformas de identificação de ponto de comprometimento são ferramentas completas que fazem uso das bases transacionais com as devidas marcações de fraude das instituições financeiras para fornecer os resultados dessas análises e as probabilidades dos estabelecimentos que podem estar comprometidos e os clientes que utilizaram cartões nesses estabelecimentos.

Nesse contexto, para avaliar se os resultados da plataforma escolhida estão sendo satisfatórios, é possível aplicar uma das métricas mais utilizadas pelas instituições financeiras, o processo de chargeback, que pode ser considerado uma versão prática e monetária do falso-negativo, ou seja, quando uma transação é marcada como fraude, mas erroneamente é classificada como legítima e tem aprovação. O índice de chargeback é a razão entre o faturamento complete do estabelecimento no período e o quantity financeiro envolvido no processo de chargeback. Espera-se que esse índice tenha sempre um valor baixo.

Por fim, é indicada a utilização de diversas técnicas para se conectar a fontes de dados, aplicar técnicas para obter qualidade das informações, removendo possíveis dados que podem enviesar as decisões finais. Além disso, é preciso aplicar diversas técnicas de classificação de transações, para comparar os melhores modelos de atuação e escolher os que mais se encaixam com as estratégias da instituição financeira, atuando de maneira a estancar os problemas, proativamente tomando ações preventivas a eles.

Nesse contexto, são derivados os casos com rating intermediário para uma fila de tratamento handbook, na qual os analistas vão avaliar todas as informações disponibilizadas e tomar a melhor decisão, aumentando o nível de detecção e minimizando os índices de falso-positivo e falso-negativo. Dessa forma, é possível barrar os casos fraudulentos e evitar o impacto negativo com os clientes e, finalmente, elaborar dashboards objetivos que vão apresentar cenários para acompanhamento das estratégias aplicadas e acertar, caso necessário, os pontos para continuar seguindo aumentando os índices de detecção.

Todas essas técnicas aplicadas de maneira conjunta formam uma perfeita armadura para as instituições financeiras no sentido de prevenir fraudes, lavagem de dinheiro e financiamento do terrorismo.



Source link

Tags: comoparapreverriscostecnologiausar
Next Post

What Is Generative AI: Instruments, Photographs, And Extra Examples

Batched Bandit Issues. Multi-Armed Bandits with Delayed… | by Sean Smith | Feb, 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent News

Optimize Knowledge Warehouse Storage with Views and Tables | by Madison Schott | Mar, 2023

March 24, 2023

Bard Makes use of Gmail Information | Is AI Coaching With Private Information Moral?

March 24, 2023

Key Methods to Develop AI Software program Value-Successfully

March 24, 2023

Visible language maps for robotic navigation – Google AI Weblog

March 24, 2023

Unlock Your Potential with This FREE DevOps Crash Course

March 24, 2023

High 15 YouTube Channels to Degree Up Your Machine Studying Expertise

March 23, 2023

Categories

  • A.I News
  • A.I. Startups
  • Computer Vision
  • Data science
  • Machine learning
  • Natural Language Processing
  • Robotics
A.I. Pulses

Get The Latest A.I. News on A.I.Pulses.com.
Machine learning, Computer Vision, A.I. Startups, Robotics News and more.

Categories

  • A.I News
  • A.I. Startups
  • Computer Vision
  • Data science
  • Machine learning
  • Natural Language Processing
  • Robotics
No Result
View All Result

Recent News

  • Optimize Knowledge Warehouse Storage with Views and Tables | by Madison Schott | Mar, 2023
  • Bard Makes use of Gmail Information | Is AI Coaching With Private Information Moral?
  • Key Methods to Develop AI Software program Value-Successfully
  • Home
  • DMCA
  • Disclaimer
  • Cookie Privacy Policy
  • Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2022 A.I. Pulses.
A.I. Pulses is not responsible for the content of external sites.

No Result
View All Result
  • Home
  • A.I News
  • Computer Vision
  • Machine learning
  • A.I. Startups
  • Robotics
  • Data science
  • Natural Language Processing

Copyright © 2022 A.I. Pulses.
A.I. Pulses is not responsible for the content of external sites.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In